An algebraic approach to multirelations and their properties
نویسندگان
چکیده
We study operations and equational properties of multirelations, which have been used for modelling games, protocols, computations, contact, closure and topology. The operations and properties are expressed using sets, heterogeneous relation algebras and more general algebras for multirelations. We investigate the algebraic properties of a new composition operation based on the correspondence to predicate transformers, different ways to express reflexive-transitive closures of multirelations, numerous equational properties, how these properties are connected and their preservation by multirelational operations. We particularly aim to generalise results and properties from up-closed multirelations to arbitrary multirelations. This paper is an extended version of [7].
منابع مشابه
A Relation-Algebraic Approach to Multirelations and Predicate Transformers
The correspondence between up-closed multirelations and isotone predicate transformers is well known. Less known is that multirelations have also been used for modelling topological contact, not only computations. We investigate how properties from these two lines of research translate to predicate transformers. To this end, we express the correspondence of multirelations and predicate transfor...
متن کاملMultirelational Semantics for ExtendedEntity-Relationship Schemata with Applications
This paper describes a multirelation semantics for a fragment of the Extended Entity-Relationship schemata formalism based on the bicategorical definition of multirelations. The approach we follow is elementary—we try to introduce as few notions as possible. We claim that bicategorical algebra handles gracefully multirelations and their operations, and that multirelations are essential in a num...
متن کاملSome algebraic laws for spans ( and their connections with multirelations ) 1 Roberto Bruni and Fabio Gadducci
This paper investigates some key algebraic properties of the categories of spans and cospans (up to isomorphic supports) over the category Set of (small) sets and functions, analyzing the monoidal structures induced over both spans and cospans by cartesian product and disjoint union of sets. Our results find analogous counterparts in (and are partly inspired by) the theory of relational algebra...
متن کاملRough ideals based on ideal determined varieties
The paper is devoted to concern a relationship between rough set theory and universal algebra. Notions of lower and upper rough approximations on an algebraic structure induced by an ideal are introduced and some of their properties are studied. Also, notions of rough subalgebras and rough ideals with respect to an ideal of an algebraic structure, which is an extended notion of subalgebras and ...
متن کاملMultirelations - Semantics and Languages
We argue that a multirelation (relation with duplicates) is not, a semantically independent data object, but rather it should be viewed as a subset. of columns within a larger relation that has no duplicates. Consequently, at the level of the conceptual database, duplicates in base relations or in views are not allowed, nor are operations on multirelations. Multirelations as query output can be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Log. Algebr. Meth. Program.
دوره 88 شماره
صفحات -
تاریخ انتشار 2017